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SUMMARY 

I t  i s  known that a relationship exists between the Fourier Spectrum of a transient excitation 
and the maximum residual response of an undamped mass-spring system to this excitation. This 
relationship i s  derived in detail and unified to cover all common forms of excitation and response 
of an undamped single-degree-of-freedom system. The method provides a simple design tool for 
application to many types of transient response problems. for a step-type transient excitation, 
the method specifies the overall transient response magnitude. For pulse-type transient excita- 
tions, the maximum residual response, or residual shock spectrum, specified by the mehod, i s  
equal to the maximum response for a pulse whose duration T i s  less than about 1/2 the natural 
period of the system. 

The Fourier Spectra of a variety of common transient excitations i s  presented i n  graphical form 
i n  the text. Analytical expressions for these spectra, expressed in a normalized form so that 
they are numerically equal to the corresponding residual response spectra, are given i n  the 
Appendix. In addition, the Appendix contains a summary of the expressions for the response 
time history of an undamped system and the primary shock spectra, or envelope, of maximum 
response during the transient excitation. 
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1 .o INTRODUCTION 

The response of an undamped single-degree-of-freedom system to a transient excitation 
i s  a classical problem in  dynamics which can be solved by a number of methods, includ- 
ing the use of the Duhamel (convolution) integral, Laplace Tmnsform, numerical inte- 
gration, and graphical phase plane methods (References 1, 2 and 3). In al l  cases, 
however, these methods lack a simple and direct means of establishing the peak response 
to the transient excitation. It i s  this latter quantity which i s  ordinarily of concern 
for engineering purposes. One direct method i s  available, however, for defining the 
peak residual response to a transient excitation (References 1 and 3). This residual 
response occurs after the end of the transient excitation and can be determined solely 
by a Fourier Spectrum of the excitation itself. This relationship between the Fourier 
Spectrum of a transient excitation and i t s  residual shock spectrum i s  explored i n  detail 
in a unified form for most types of excitation and response of an undamped single-degree- 
of-f reedom system . 
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2 .o BASIC THEORY 

For any linear system, ini t ial ly a t  rest, the response time history v(t) to any input 
excitation E(t) can be defined by the Duhamel integral 

t 

0 

where 

I = dummy time variable 5 t 

g(t) = response of system to a unit impulse at time t, and 

v(t), r(t) = generalized response and input variables to be defined. 

A general equation of motion for the undamped single-degree-of-freedom system can 
be expressed in  the form (Reference 1): 

1 

OO 

7 V(t) + v(t) = E(t)  

where c(t) and v(t) represent generalized variables for the specific forms of excitation 
and response which are listed i n  Table I and identified i n  Figure 1. The undamped 
nqtural frequency of the system i s  a,, . The particular form for Equation 2 i s  chosen 
for reasons t o  be-made clear later 0:. 

It i s  sufficient, for now, to emphasize that the generalized excitation variable a(t) 
can have any of the forms listed in  the left-hand column of Table I .  The corresponding 
generalized response variable v(t) i s  listed i n  the middle column of Table I. 

For example, i f  the undamped mass-spring system i n  Figure 1 has its base attached to a 
rigid foundation and the mass m i s  driven by a transient vertical force P(t), the usual 
form for the equation of motion of the mass would be 

m x(t) + k x(t) = P(t) 
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TABLE I 

EXCITATION AND RESPONSE VARIABLES FOR A FIXED-BASE OR 
MOVINGBASE UNDAMPED SINGLE- DEGREE-OF-FREEDOM SYSTEM 

System 

t 

+ 
Fixed 
Base 

1 
I 

Moving 
Base 

Excitation 
4t) 

Base Displacement u(t) 

Base Velocity w 
U( t) 

- U(t)/o2, 
Base 
Acceleration 

Base 
Jerk 

2 - U( t)/wo 

Mass 

Spring 

Base 

x(t) = s(t) - Mass Displacement 
PT(t) - Reaction Force on Base 

I x(t) - Mass Displacement 

X( t) - Mass Acceleration 

s(t) 

PT(t) 

- Relative Displacement of Spring 

- Reaction Force on Base 

- Relative Velocity of Spring 

Figure 1. General Model for Response and Excitation of Undamped 
Single Degree-of-Freedom System 
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Dividing through by the spring constant k and setting m/k = I/w;, this becomes 

-m 1 2 n(t) + x(t) - 
OO 

This i s  the same as the genemlized form given by Equation 2 and identified by the 
first entry in Table I where the excitation e(t) i s  P(t)/k and the response v(t) i s  x(t). 

The remaining entries in  Table I are formed i n  a similar manner so that Equation 2 
becomes a single general form for the equation of motion for al l  the forms of excita- 
tion and response listed. 

2.1 Unit Impulse Response 

The unit impulse can be defined, i n  general form, by the integral 

. where T i s  a dummy time variable of integration 5 t. 

This represents an excitation whose duration i s  vanishingly small and whose integral 
with time i s  unity. Since i t  corresponds to an excitation with essentially zero dura- 
tion, i t  may be treated as an init ial condition to the solution of Equation 2 for free 
vibration where e(t) i s  zero. 

This general solution to Equation 2 for e(t) = 0 i s  

v(t) = A. cos wot + B sin wot  

The init ial value of the response variable v(0) i s  

(4) 

v (t- 0) = A (5) 

so that for a system starting at rest, A = 0. The init ial rate of change of the response 
variable i s  

4 



However, Equation 2 can also be used to define the init ial  rate of change, in the 
l imit,  as t-0. Since the initial response magnitude i s  zero, then the init ial  rate of 
change i s  obtained by setting v = 0 in Equation 2, integrating 3 = d+/dt with time, 
and taking the l im i t  as t-0. The result i s  

t t 

v(t -0) = l i m  [ [g d ~ ]  = l im  [o: [ €(T) d.] ( 7) 
t- 0 t - 0  

The left-hand side, 4 (t - 0), i s  given by Equation 6 and the right side by ui times 
Equation 3 for the unit impulse excitation, so that 

or 

2 
0 

ooB = o  1 

B = wo 

Thus, the generalized unit impulse response for the form of the equation of motion in 
Equation 2 i s  (see Appendix A) 

g(t) = oo sin oot (9) 

This can be shown to have the units corresponding to (units of v)/(units of e time). 

2.2 General ResDonse Eauation 

I f  Equation 9 i s  inserted into Equation 1, and the sine function expanded, the general 
response equation for any input E(t) becomes 

= wo sin w O t  i E(T) cos w07 d-r 

0 

- oo cos oot E(.) sin W ~ T  dT i 0 
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Note that v(t) i s  s t i l l  a general response variable, not necessarily a displacement 
The generalized rate of change i s  obtained by differentiating Equation 10 with respect 
to time t. This does not involve the integrals i n  Equation 10 since these are indepen- 
dent of time t. Thus, 

s(t) = COS wot i ~ ( 7 )  cos w07 dT 

0 

i- w sin w0t e ( ~ )  sin w T d7 
0 ‘ J  0 

2.3 Residual Response and Fourier Spectrum 

Equations 10 and 11 can now be used to define the response magnitude v(T) and i t s  
rate of change f(T) at the end of a transient excitation of finite duration T. These 
w i l l  then become init ial  conditions for the free vibmtion after cessation of the 
transient, This i s  the period of residual vibration for which an envelope of maximum 
response as a function of wo i s  desired. This wi l l  be shown to  be directly related to 
the Fourier Spectrum of the excitation only, without requiring any knowledge of the 
forced response during the transient (Reference 3). The system itself i s  defined only 
by zero damping and i t s  undamped natural frequency wo . 
Thus, by replacing t in Equations 10 and 17 with the pulse duration T, the init ial  
response magnitude and rate of change at the end of the transient input are determined. 
Consider now the two integmls in each of these equations. The Fourier Spectrum F ( jw) 
of the excitation E(t) i s  

T 

F (jo) = e(t) .-jot d t 

0 

or, in  trigonometric form, 

T T 
F ( j w )  = Jt(t) cos w t  dt - j e(t) sin w t  dt 1 

0 0 
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where 

%[F(jw)] = ]e(t) cos w t  dt = Real Part of Fourier Spectrum 

J [ F(j 0) I = - 1 t(t) sin of  dt = Imaginary Part of Fourier Spectrum 

0 

0 

Comparing Equation 13 with the integrals in Equations 10 and 11, i t  i s  clear that these 
are identical providing t becomes T, T becomes t, and oo becomes w . The first trans- 
formation has already been established as a requirement to define conditions at  the 
end of the transient excitation. l h i s  allows T to  become the actual time t during the 
transient, or t = t < T. Finally, the natural frequency of the system wo can take on 
any value since a specific system has not yet been defined, only i t s  mathematical 
model, so that wo can become any frequency w, or vise versa. 

Thus, Equations 10 and 11 can be modified to specify the response magnitude and i t s  
rate of change ut the end of the transient excitation by the form 

For this period of free vibration after the transient excitation, the residual response 
v,(t) = v(t > T) can now be defined by returning to Equations 4, 5 and 6 to give 

3 (UO' T) 

OO 
s i n w  t 

0 
v (t) = v(oo, T) cos wot + 

r 

This is, of course, a pure sinusoidal motion with a frequencyuO and has a magnitude 

Inserting Equations 14 and 15 into Equation 17, the cross-prcaduct terms i n  the square 
cancel and, since sin x + cos2 x = 1, one obtains 2 

7 



However, the square root term i s  simply the absolute value of the Fourier Spectrum 
of the excitation so that Equation 17 becomes: 

Thus, a simple expression i s  obtained which relates the maximum amplitude of the 
residual vibration i n  terms of the absolute value of the Fourier Spectra of the excita- 
tion and the resonance frequency of the system. 

Consider now the units of the right side of Equation 19. From Equation 12, the units 
of F(jw) are (units of excitation variable E) x (time). Thus, the units of w IF (j w)I wi l l  
have the same units as the excitation. This i s  also obvious from Equations 2 and 19. 
Clearly, i f  h e  transient excitation i s  always normalized by i t s  maximum value emax 
then one can write Equation 19 i n  the dimensionless form, 

E max 
e 
max 

T h i s  i s  the key result which dictates the reason for choosing the particular form of 
the equation of motion given by Equation 2. In other words, for any given type of 
excitation e, a nondimensional plot can be made of the quantity w lF(jw)(/emax 

which specifies the ratio of vrmax to emaX . Even more generality i s  provided 

however bv the fact that the riaht-hand side of Eauation 20 wi l l  alwaw reduce to a 
8 Y I 

function of only a single nondimensional quantity, wOT, for any given form of transient 
excitation where T i s  the duration (or some characteristic time proportional to duration) 
of the transient excitation. 

Equation 20 can now be combined with Table I to summarize the maximum residual 
response for specific response variables, as shown i n  Table 11. The first column i s  the 
specific form of the general excitation variable e ( t ) .  It can be given by the various 
forms ranging from input force P(t) to the mass to various derivatives of ground motion. 

The second column represents the Fourier Spectrum of this excitation, nondimensionalized, 
according to the right side of Equation 20, by the maximum value of the transient exci- 
tation. Note that this quantity i s  totally independent of the responding system. 

The third column, equal to the second column, term by term, i s  the nondimensional 
form of the maximum residual response, as specified by Equation 20. This parameter 
is, of course, determined for a specific frequency w equal to the natural frequency wo 
of the system. 

8 



TABLE I1 

MAXIMUM RESIDUAL SHOCK RESPONSE OF UNDAMPED 

NORMALIZED FOURIER SPECTRUM OF TRANSIENT EXCITATION 
SINGLE DEGREE-OF-FREEDOM SYSTEM IN FIGURE 1 RELATED TO 

Genera I ized Excitation 
tt) 

0 on 
x Mass 
ii 
aJ 

Base Displacement u(t) 

Base Velocity CJ (t) 
0, 

u(t) 

-u(t)/w; B Acceleration I 0 
S 

*- Base 

Base Jerk -u(t)/oi 

Normalized Maximum 
Residual Response 

r max lemax V 

x r max /X,W 

'T *ax/ 'max 

x /u r max max 

x r  max'umax 

Xr max/'max 

... 4 br max/Umax 

(1) Fcw) = Fourier Spectrum of e(t) 

= P 
S max 

= Maximum Dynomic Reaction Forceon Base for Maximum Ground 
Acceleration U . 

/k, Static Displacement to Peak Force. (2) x 
(3) 'T max 

max 
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3 .O APPLICATION TO PREDICTION OF RESIDUAL SHOCK SPECTRA FOR 
TRANSIENT EXCITATION 

The preceeding results may now be used to define the maximum response amplitude 
of an undamped single-degree-of-freedom system following the end of a transient 
excitation. The envelope of this response, plotted versus the natural frequency of the 
system, i s  the Residual Response Spectra. 

3.1 Pulse-Type Transient Excitation 

For a pulse-type excitation, the peak response generally occurs after the end of 
the excitation (i .e., residual response period) whenever the characteristic dura- 
tion (T) of the shock i s  less than 1/2 the natural period (2~/o ) of the single degree- 
of-freedom system. This condition applies in  a large number of practical cases of 
interest in  shock design. 

0 

The value of the residual response spectra i s  given, in normalized form, by Equa- 
tion 20. 
common types of pulse excitation and the results are plotted i n  Figure 2 .  The 
analytical expressions used to derive these plots are summarized in Appendix A. 

The right hand side of Equation 20 has been evaluated for a number of 

Example - As an example, consider a 10 millisecond half-sine pulse excitation 
with a peak amplitude of 100 g's applied to the base of an undamped 
system with a natural frequency of 46 Hz. The following parameters 
can be defined: 

e(t) 

e = i j  = 1009, the peak excitation 

T = 0.01 sec. 

wO 

= u(t), the generalized excitation 

max max 

= 2 ~(46) = 290 radius/sec . 
wo T = 2.9 

This case meets the criteria that T I (271/w0) so that the peak response of the 

system wi l l  occur after the end of the half-sine pulse. 

Referring to Figure 2, for UT = ooT = 2.9, the normalized Fourier spectrum, o 1 F(jo)l 

for a unit excitation i s  1 SO. Thus, according to Table 11, the maximum residual 
acceleration response i s  defined as follows: 

.. - r max - 1.5 urnax = 1.5 - loo= 150 9's. or x 

10 



3 

10 

1 .o 

0.1 

.01 

oT = (Frequency i n  radians/sec) (Characteristic Duration) 

Figure 2a. Normalized Fourier Spectrum of 6 Pulse-Type Shock 
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n 
3 

LL 

3 

UT = (Frequency i n  radians/sec) (Characteristic Duration) 

Figure 2b. Normalized Fourier Spectrum of 6 PuIse-Type Shocks 
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Other response variables, such as the maximum relative displacement 8 

reaction force P 

or 
r max 

can be defined in  a similar manner by using the relationships T rnax 
i n  Table I1 between the desired excitation and response variables. 

3.2 Step-Type Excitation 

If the transient excitation consists of a steptype input, the maximum transient 
response v occurs after the excitation has reached its maximum value E 

max max 
given by (Reference 1) 

and i s  

v = v  
max rmax + 'max 

as shown in  Figure 3. 

Thus, for this type of excitation, the maximum residual relative response, added to the 
maximum excitation defines the maximum total response v . In this case, com- 

max 
. bining Equations 20 and 21, the maximum total response, in nondimensionalized 

i s  simply 
form, 

E max E 
max 

The first term i n  Equation 22 has been evaluated for several common types of 
steptype excitation (see Appendix A) and the results are shown in Figure 4. 

Figure 3. 

' I  I ma: 
I 
I /- 0 A v(t) j - t  
T 

General Form of Excitation and Response to a Step-Type Transient 

13 



n 
3 
a 
L - 
3 

... . 
'0.1 1 .o 10 

UT = (Frequency in radians/sec) (Characteristic Duration) 

Figure 4. Normalized Fourier Transform for Step-Type Shocks 
14 
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Example - For illustration, consider the case of a ramp-step force P(t) applied to 
the mass of a single degree-of-freedom system. The follawing parameters 
are assumed. 

c(t) = P(t)/k, generalized excitation 

P 

k 

Xs 

= lo4 Ibs, maximum value of the step force 

= 2 * 105 Ib/in., stiffness of the system 

= P 

max 

/ k = 0.05 in., static displacement to the 
max 

maximum force 

f0 

T = 10 milliseconds, rise time 

w,T = (2n) (46) (.01) = 2.9 

= w0/27r = 46 Hz, natural frequency 

From Figure 4, for the ramp step excitation, the maximum relative residual response 
for wT = 2.9 i s  

= 0.67 
V 
rmax - - -  
e E 
max max 

The maximum generalized excitation c 

Equation 21, the maximum total generalized response i s  

i s  simply X = P 
rnax s max 

/k. According to 

v = v  + c  
max rmax max 

Therefore, for this case, when v = x  , v  = X  and emax = Xs, 

the maximum total displacement i s  
max max rmax rmax 

X 
X max = [y + 1] Xs = [ O M  + 13 (0.05) = 0.083 in. 

Note that the relative displacement response, after the end of the ramp 
excitation, i s  purely sinusoidal. The velocity and acceleration response X(t) 
and x(t) can be determined exactly by simply differentiating this relative dis- 
placement response x (t) . Thus, the following additional maximum response 

parameters can be defined. 
r 
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Maximum Velocity of Mass 

d2 x (t) 
- 

max - d t2  x 

= w o * x  d t  I max r max 

d x ,(t) 
= -  

max 
i< 

= ,* x 
max 0 rmax 

A max = 2r 46 [0.67] (0.05) = 9.7 in./sec 

Maximum Acceleration of M a s s  

- = , 2 .  max 
x 

0 
or 

g 

= (2n (0.67) (0.05)/386 = 7.25 g's 

3.3  N-Wave and Decaying Sine Excitation 

Two special forms of transient excitation are treated separately i n  this section 
because of their particular application for analyzing shock response to sonic 
booms, and response of equipment mounted on structure which i s  i tself  subjected 
to a transient pulse load. 

The N-wave characterizes the ideal time hisotry of the free-field overpressure due 
to a sonic boom. A decaying sine i s  a useful approximation for the time history of 
the response of a building subjected to an impulse load such as that.4nduced by an 
explosive blast. The normalized Fourier Spectra, as defined by Equation 20, are 
shown in Figures 5a and 6 for these two types of shock excitation. 
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1 .o 

X 

> 

8 
- 
n 
3 

*- z - 
3 

0.1 

0.01 
0.1 1 .o 10 

UT, I Frequency in radians/sec 1 x [ Duration of Positive Phase 1 

Figure 5a. Normalized Fourier Spectrum (Residual Shock Spectrum) and Primary 
Shock Spectrum for N-Wave of Unit Peak Amplitude 
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1 

1 .  

- 
n 
3 

LL 
-- v - 
3 

0. 

0 .o 

t 

0.1 A 1 .o 

w/ol , Frequency/Natural Frequency of Domped Sine 

Figure 6. Normalized Fourier Spectrum for Decaying Sine 
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Response for N-Wave 

Note that the N-wave has a zero net impulse and the normalized Fourier Spectra 
i s  proportional to (wn2 for small values of UT. This low-frequency approximation 
for the normalized Fourier Spectra i s  characteristic of a l l  double shocks with a net 
impulse of zero. In contrast, the spectra shown earlier in  Figure 2 for single pulse- 
type shocks, vary as W T  for low values of wT. 
analysis of th is .  

See Appendix A for a more complete 

For comparison with the residual shock spectrum for the N-wave, the primary shock 
spectra for the N-wave i s  also shown in  Figure 5a. This defines the envelope of the 
maximum or minimum response peaks during the forced response period (i .e ., 
0 < t < 2T). Both a positive (vGax) and negative (vkin) primary shock spectra must 

be defined for this type of pulse. For simplicity, only the upper envelope of these 
two combined primary shock spectra are shown in  Figure 5a. The analytical expres- 
sions which define all of these shock spectra for the N-wave, as well as the actual 
time history of response for an undamped system are summarized i n  Appendix A. 

Example 

For application of these generalized response spectra to a particular case, the 
relationships between the generalized and specific excitation response variables 
i n  Table 11, page 9, may be used. For example, i f  the peak overpressure of a sonic 
boom i s  Pmax - Ib/ in .2 and the stiffness of the responding system i s  k(lb/in .2)/in ., 
the corresponding peak excitation i s  

E = P / k  = X,, in. 
max max 

where Xs = static displacement to the peak load, P 

value of the peak response, v 

= X residual shock spectra, v ~ ~ ~ ~ / E ~ ~ ~  

Spectra w IF0w)l in Figure 5a for E: 

or \I- i n  Figure 5a. These shock spectra are replotted 
G a x / X s  

spectra v max/Emax minlEmax 
in  Figure 5b i n  a more convenient form for the particular variables just defined. In  
this case, frequency w i s  specified on the abscissa as fo = wO/2m; where fo = natural 
frequency of the undamped system in  Hz. 

, and the corresponding 
max 

, i s  the peak displacement of the mass Xmax. The 
max 

/Xs i s  given by the normalized Fourier 
r max 
= unity. The forced response peaks, 

maX 
or Xr;lin/Xs are found from the plot of the corresponding primary shock 

+ 
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Response for Decaying Sine 

The decaying sine shock has no finite duration so that a discrete residual shock 
spectrum does not exist. However, the maximum response of an undamped system 
to this type of excitation tends to occur near the end of the transient for systems 
with a natural frequency wo equal to or less than about 1.5 times the frequency wd 
of the damped oscillation. For this condition, the normalized Fourier Spectrum, 
plotted i n  Figure 6, i s  a good approximation for the overall shock response spectra 
of an undamped system. For the case where wo > 1 .5 wd, the peak response occurs 

near the beginning of the damped oscillation, and the normalized Fourier Spectrum 
i s  no longer applicable for estimating the shock spectra. Approximate values for 
this range of wo/wl are given i n  Appendix A.  

It i s  clear, from Figure 6, that this normalized Fourier Spectra has a maximum value 
at a frequency w equal to the frequency w, which i s  the limiting value for the fre- 
quency wd of the damped sine pulse when the decay constant approaches zero. That 

is, 

where 

+a0 

-a0 

This normalized Fourier Spectrum i s  identical to one form of the sinusoidal frequency 
response function for a damped single-degree-of-freedom system. In this case, how- 
ever, i t  approximates the peak response of an undamped system to a damped sine 
wave for wo/o < 1.5. The analytical expressions which define this normalized 

Fourier Spectra as well as the response time history for any value of wo/wd are 

are summarized in  Appendix A. 

d -  - 

Example 

Assume a ground shock excites a single mode of a structure so that the building 
response can be described approximately by 

21 



where 

= peak velocity of the envelope of the decaying sine extrapolated 
max 

u 
back to t = O  

s = decay constant for decaying sine response 

= undamped natural frequency of building mode 

= damped natural frequency of building. 

1 
0 

O d  

According to Table 11, page 9, i f  the excitation c(t) to an equipment i tem in the 
building i s  the base velocity b(t) , the peak "residual" response velocity X 
given by 

i s  
r max 

= u  
r max max x 

The bracketed term i s  the normalized Fourier Spectrum plotted i n  Figure 6, for unit 
excitation, and i s  evaluated at the natural frequency wo of the system. 

To illustrate a specific case , assume the folloying parameters. 

max 
6 = 20 in./sec 

w,/2a = 3Hz 

6 = 0.1 

wo /2r = 2.5 Ht, natural frequency of equipment to be analyzed. 

The following response parameters can now be determined. 

From Figure 6, 

22 



Peak Velocity Response, Xmax= (2.4) (20) = 48 in./sec 

max O0 Xmax - - ( 2 d  (2.5) (48) = 1.95 gls 
X 

386 Peak Acceleration Response, - = 
9 g 

= 1.53 in .  rnax - 
2 - - x 

( 2 d  (2 -5) Peak Displacement (Approx .), X 
0 

max o 

I t  should be emphasized that these calculated response peaks are close approximations 

to the true values since b+,/Wd = 2.5/3 VI- ( 
the peak vibration response occurs after the damped sine excitation has decayed to a 
low value so that the response i s  very nearly one of free sinusoidal vibration. 

% 0.83 < 1 .5. In this case, 

There i s  one important limitation of the normalized Fourier Transform for predicting 
response of a single-degree-of-freedom system to a damped sine excitation. Damping 
of the responding system i s  very influential in  limiting the peak response for values 
of tdo/wd from 2/3 to 3/2. I n  this range, the natural frequency of the responding 

system i s  close to the frequency of the damped sine excitation. The resonant response 
build-up i s  therefore very sensitive to damping in  the responding system. This i s  not 
true for the other types of shocks considered earlier. For these cases, the peak 
response of a damped system to the shock excitation i s  only slightly less than the 
undamped response for the usual amount of damping encountered i n  structure (i .e ., 
6 < 0.1). - 
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APPENDIX A 

NON-DIMENSIONAL FOURIER 
FOR SEVERAL TYPES OF 

Fourier Spectra 

The Fourier transform at a function e(t) i s  

+aD 

AND SHOCK RESPONSE SPECTRA 
TRANSIENT EXCITATIONS 

The absolute value of FQw) can be expressed in non-dimensional form by 

max 

where e i s  the maximum value of a(t). 
max 

This non-dimensional normalized form i s  listed in  Column 3 of Table I11 for several types of 
transient excitation identified in  the first two columns. 

For step type pulses which have a finite value at t = 0, i t  i s  necessary to modify Equation 
A1 by adding a decay term e-cut to the integral and take the l im i t  as a-0 so that 
Equation A1 becomes 

-ut This insures that the integration can be performed since the function e(t)e 
zero for 
for a variety of pulse and step transients in  Figures 2, 4, 5 and 6. 

approaches 
t -wo.  The normalized Fourier Spectra given by Equation A2 have been plotted 

Transient Response 

The response time history v(t) to these transient excitations can be determined by well known 
methods such as the Duhamel integral solution given by Equation 10 in  the text. Known solu- 
tions for these response time histories were obtained from Reference 1 or derived independently 
where necessary. The resulting solutions are listed in  Column 4 of Table 111. 
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For most of the types of transient excitation, two expressions are required to define the maxi- 
mum response - one for the response during the excitation and one for the residual response 
period. 

Transient Response to an Ideal Impulse 

An impulse excitation i s  defined by the limiting value of the time integral o f  the excitation 
E(t) as 

t 

where T = dummy time variable of integration, and C(T) = generalized excitation defined i n  
Table 1, page 3. 

For a unit impulse, I = 1, which i s  the first case treated in Table 111. The generalized response 
v(t) to impulse excitation i s  given by 

v(t) = I g(t) 

where g(t) = wo sin wo t, the generalized response to a unit impulse when E(t) has the form 

defined in  Table I ,  page 3 .  

Thus, the amplitude of the response to an impulse i s  equal to the shock spectra and i s  given by 

V = I o  (A4  r max 0 

As discussed in  Section 2.1, page 4, the magnitude of the impulse I times ut i s  equal to the 
init ial  rate of change C (t 4 0) of the generalized response variable v(t). Examples of the 
specific value of this "init ial condition" and the resulting expressions for the response time 
history are given in  Table I V  for several common types of impulse excitation. 

Transient Response to Finite Single and Double Pulse 

When the natural period (27r/w,) of a single-degree-of-freedom system i s  much greater than 

the duration T of a single shock pulse, the transient response to this pulse i s  classified as an 
impulse response. In  this case, wo T < 1 and the expressions derived i n  the preceding para- 

graph for response to an ideal impulse define the actual response to a single, finite duration 
pulse to a close approximation. 
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An example of this concept i s  illustrated in the next to last row i n  Table I V  for the general 
case of response to a single rectangular pulse with a maximum amplitude e 
The impulse for this pulse i s  

and duration T. 
max 

so that, according to Equation A5, the generalized response v(t) i s  

v(t) = I wo sin w o t  = e w T sin wot 
max 0 

and the normalized shock spectrum i s  

V 

e 
max 

max 

- -  - woT 

Thus, as discussed i n  Section 3.3, the normalized Fourier Spectrum for a l l  single positive 
pulses, regardless of their shape, varies directly as w T for woT < 1. For any shape other than 

a rectangular one, the area under the time history of the excitation e(t) defines the impulse I .  
I f  the maximum value of e(t) during the pulse i s  e the normalized shock spectrum i s  given 

0 

max 
by 

V max e = [F] woT 
max max 

where I/T = the average value of e(t) over the pulse duration T. 

For a symmetrical double pulse of very short duration relative to the natural period of a 
responding system, a slightly different result i s  obtained. Consider the case, illustrated i n  the 
last row of Table IV, for a double rectangular pulse of duration 2T with equal positive and 
negative peak amplitudes + E  and - c . Using the Duhamel integral method, the 

generalized response to this pulse can be expressed as (see Equations 1 and 9) 
max max 

sin w (t - T) E(T) d7 
v(t) = oo] 0 

0 

= oo sin o t cos 0 T e(7) d.r OJ 0 

- w cosw t J  sin o07 t ( ~ )  dT 
0 0 
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In  this case, o T << 1 so that, for a first approximation, 
0 

COS W o T  - 1 

sin w T - O ~ T  0 

Since the excitation i s  zero for t > 2T for this symmetrical pulse, the response for a l l  values of 
t > 2T i s  given by 

2T 2T 

E(T) dT - "0' cos w O t  T €(T) dT 

0 
v(t) N w sin w t 0 0 

0 

The first integral i s  zero for the symmetrical double pulse since i t s  net impulse i s  zero. For 
the double rectangular pulse, the second integral i s  

2T T 2T 
dT + /  T (-emaX) dT 

T 

T e(.) dT = I- O 0 

= E  
lYMX 

T2 - - - €  
max 

Thus, to a close approximation for o T << 1, the response to the double rectangular pulse i s  
0 

and the corresponding normalized shock spectrum i s  

2 
V 

max 

max 
-- € - (WJ) 

For any double pulse shape with zero net i m  ulse, and positive phase duration T, when 
w,T << 1, the normalized shock ___q7 spectra i s  close y approximated by 
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V l o /  J - max N - (w,T)~ 1 (t) [ - I  d ($-) 
E 

max 0 mclX 

where To = total duration of double pulse. 

The integral w i l l  normally be negative giving an overall positive value for the shock spectrum. 

Shock Response Spectra 

As discussed i n  the main body of the text, the Residual Response Spectra, or envelope, as a 
function of wo , of the maximum response amplitude after the transient excitation ends, i s  

defined by the normalized Fourier Spectra. This has been given in Column 3 of Table 111. 

The envelope of maximum response amplitude during the transient excitation i s  called the 
Primary Response Spectra. Available solutions for the Primary Response Spectra have been 
obtained from Reference 1 or derived i n  the usual way by differentiating the response time 
'history and solving for the time and amplitude when the rate of change of response i s  zero. 
These solutions are listed i n  the last column of Table I11 for the pulse-type excitations. For 
the ramp-type excitations, the Shock Response Spectra listed correspond to the total response 
spectra after the end of the ramp and are numerically equal to one plus the normalized 
Fourier Spectra listed i n  Column 3. 

ADDlica tion of Sum rDosi t i  on Pri ncide 

The derivation of the response time history to a transient excitation i s  generally carried out 
most efficiently by applying the superposition principle. With this method, known solutions 
for the response to simple transient excitations can be utilized by defining a discrete shock as 
the summation of two or more elements for which the response time histories are known. This 
method was used for several of the entries in  Table 111. 

As an example of this method, the residual response to a unit pulse of duration T can be defined 
as the sum of the response to a unit step starting at the t = 0 minus the response to a unit step 
starting at time t = T. The response of an undamped system to a unit step i s  

v(t) = 1 - cos wJ 

Thus, the residual response of an undamped system to a unit rectangular pulse i s  written down 
directly as 
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= 1 - cos w t - [l - cos oo(t - T)] 
0 

= cos wo(t - T) - cos wot 

= 2 sin w0T/2 sin oo (t - T/2) 

This simple process of summation of known response solutions i s  generally much easier than the 
alternate method of defining the amplitude and rate of change of the response at the end of one 
forcing period to define init ial  conditions for the next period. 
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